

GR LBD-driven GAL4 reporter HEK 293 stable cell line

Catalog Number: SL-3001 (For Research Use Only)

Product description

Nuclear hormone receptors (NHRs) are a group of ligand-binding transcription factors (TFs). More than 350 NHRs are available in the PDB. Like other TFs, they can regulate gene expression by binding to specific DNA regulatory elements, but their activities are modulated by the corresponding ligands. They play many important physiological functions such as embryonic development, organ physiology, cell differentiation, and homeostasis. They are also associated with human diseases including cancer, obesity/diabetes, arthritis, and asthma. Members of this family are often chosen to be drug targets.

Conventionally, the response element-luciferase reporter assays are used to study endogenous or exogenous receptors, and analyze the receptor signaling pathway in a native biological context. Due to the low sensitivity of these assays and the similar response element shared by multiple NHRs, their applications are limited. Signosis has developed LDB-driven GAL4 reporter HEK 293 stable cell lines by delivering two vectors, one expressing 8 copies of GAL4 upstream activator sequences (UAS) in front of the luciferase reporter gene, another expressing Gal4 DNA Binding Domain (DBD) and GR ligand-binding domain(LBD). Upon addition of a corresponding ligand, the DBD-LBD fusion protein is activated, and binds to GAL promoter binding site, leading to the induction of luciferase. The stable clones were selected with hygromycin and G418, The functional assay was subsequently conducted by DEX treatment, and the clone with the highest induction fold (50) has been chosen for this product. The advantages of these stable cell lines are low cross-reactivity with other nuclear receptors and less toxicity of the chimeric receptors to the cells when overexpressed. These cell lines can be used to screen drug compounds for agonist or antagonist hit identification.

Materials provided

One vial of 2×10^6 cells, at passage 4, in Freezing Media. **IMPORTANT**: store the frozen cells in liquid nitrogen until you are ready to thaw and propagate them.

Handling cells upon arrival

It is strongly recommended that you propagate the cells by following instructions as soon as possible upon arrival**.

IMPORTANT: It is imperative that an adequate number of frozen stocks be made from early passages as cells may undergo genotypic changes. Possible genetic instability in transfected cells may results in a decreased responsiveness over time in normal cell culture conditions.

Required Cell Culture Media

Complete Growth Media In 450mL of DMEM, add 50mL FBS (10% final) and 5mL Penicillin/Streptomycin (1% final).

• 2x Freezing Media

Add 10% DMSO (final) to Complete Growth Media and sterile filter. Make fresh each time.

Materials required but not provided (May be substituted with comparable third-party products):

Materials	Product number	
Dulbecco's Modified Eagles	Hyclone SH30243.01	
Medium (DMEM)	-	
Fetal Bovine Serum (FBS)	Fisherbrand P/N 03-	
	600-511	
Penicillin/Streptomycin	Hyclone P/N SV30010	
Trypsin	Hyclone P/N	
	SH30236.02	
Phosphate-buffered saline	Cellgro P/N 21-040-	
(PBS)	CV	
DMSO	Sigma P/N D8418	
96-well white plate	Greiner Bio-One P/N	
	655098	
Luciferase substrate	Signosis P/N LUC015	
Cell lysis buffer	Signosis P/N LS-001	
Hygromycin B	Toku-E P/N H010	

Initial Culture Procedure

- **1.** Quickly thaw cells in a 37°C water bath with careful agitation. Remove from the bath as soon as the vial is thawed.
- Transfer cells to a T-25cm² flask (or 100mm² dish) containing 8-12ml of Complete Growth Media.
- **3.** Gently rock the flask to ensure the cells are mixed well in the media. DO NOT PIPET.
- **4.** Place the flask with cells in a humidified incubator at 37°C with 5% CO₂.
- After cells adhere (wait at least 4 hours to overnight), replace media with fresh Complete Growth Media. <u>Recommendation: the cells can</u> <u>be maintained in Complete Growth Media</u> <u>with 100µg/ml of Hygromycin B and/or 400µg/ml</u> <u>G418.</u>

Subculture Procedure

- 1. After Cells have recovered and growing well subculture/passage cells when the density reaches 90-100% confluency, maintain and subculture the cells in Complete Growth Media.
- **2.** Carefully remove the culture media from cells by aspiration.
- **3.** Rinse cells with PBS, being careful to not dislodge attached cells. Then remove PBS by aspiration.
- **4.** Add 1-2 mL trypsin/Tris-EDTA solution.
- **5.** Incubate with trypsin for 2-5 minutes (or until detached). Confirm detachment by observation under the microscope.
- **6.** Add 5-10ml of pre-warmed Complete Growth Media and gently pipet up and down to break the clumps.
- **7.** Passage cells in 1:3 to 1:5 ratio when they reach 90% confluency.

NOTE: Stable cell lines may exhibit a slower proliferation rate compared to parental cells. Do not seed cells at suboptimal density as this may hinder cell growth and division.

Preparing frozen stocks

This procedure is designed for 100mm² dish or T-75cm² flasks. Scale volumes accordingly to other vessels.

- 1. When cells reach 90-100% confluency, freeze down cells.
- 2. Detach cells according to "Subculture Procedure."
- **3.** Transfer cells to a 15ml conical centrifuge tube and centrifuge at 250 x g (or 2,000 RPM) for 5 minutes to collect the cells into a pellet.
- 4. Carefully aspirate the media.
- 5. Add 1ml of **Freezing Media** and gently resuspend by pipetting up and down.
- 6. Transfer 1mL of cells into a cryogenic vial.

- 7. Place the cryogenic vial in a freezing container (*Nalgene # 5100-0001*) and store it at -80°C freezer overnight.
- **8.** Transfer cells to liquid nitrogen for long-term storage.

Assay procedure

The following procedure should be followed as a guideline. You will need to optimize the assay conditions based on your experimental setup.

- 1. The day before performing the assay, trypsinize the cells and seed each well of a 96-well white-wall plate with $1 \ge 10^4$ cells in 100µl.
- **2.** Incubate the plate in a humidified incubator at 37°C with 5% CO₂ overnight.
- **3.** Add inducing 10 uM DEX in DMEM + 0.1% FBS for 16 hours.
- After 16 hours, carefully remove media by aspiration and add 100µl of PBS to each well. Be very careful not to dislodge the cells. Note: HEK293 cells are very easily detached. You may consider skipping addition of PBS here to reduce this risk.
- **5.** Remove PBS by aspiration and add 20µl of 1x lysis buffer to each well (To prepare 1x lysis buffer, add one volume of 5x lysis buffer to four-volume of distilled water).
- **6.** Incubate cells in lysis buffer for 15-30 minutes at room temperature with gentle agitation.
- 7. Add $100\mu l$ of luciferase substrate to each well and gently pipette up and down.
- 8. Immediately read the plate in a luminometer.

For Data, visit

https://www.signosisinc.com/product/ppar-gamma-lbd-driven-gal4-reporterhek-293-stable-cell-line-fp

Signosis Luciferase Reporter Stable Cell Lines

Transcription Factor	Pathway	Cell Line	Cat #
NFkB	NFkB	Hela; human cervical cancer	SL0001
NFkB	NFkB	NIH/3T3; mouse fibroblast	SL0006
NFkB	NFkB	HEK293; human embryonic kidney	SL0012
NFkB	NFkB	MCF-7; human breast cancer	SL0013
NFkB	NFkB	A549; human lung cancer	SL0014
NFkB	NFkB	HepG2; human river cancer	SL0017
NFkB	NFkB	MEF; murine embryonic fibroblast	SL0033
NFAT	Calcium Signaling	Jurkat; human T lymphocytes	SL0032
NFAT	Calcium Signaling	Hela; human cervical cancer	SL0018
p53	p53	Hela; human cervical cancer	SL0011
p53	p53	RKO; human colon cancer	SL0007
SMAD	TGFbeta	HepG2; human river cancer	SL0016
SMAD	TGFbeta	NIH/3T3; mouse fibroblast	SL0030
NRF2	Antioxidant Response	MCF7; human breast cancer	SL0010
STAT1	JAK-STAT	Hela; human cervical cancer	SL0004
STAT3	JAK-STAT	Hela; human cervical cancer	SL0003
HIF	Hypoxia Response	NIH/3T3; mouse fibroblast	SL0005
HIF	Hypoxia Response	Hela; human cervical cancer	SL0023
HIF	Hypoxia Response	Neuro2a; mouse neuroblastoma	SL0027
ER	Estrogen Receptor Signaling	T47D; human breast cancer	SL0002
AR	Androgen Receptor Signaling	MDA-MB-453; human breast cancer	SL0008
GR	Glucocorticoid Receptor Signaling	MDA-MB-453; human breast cancer	SL0009
GR	Glucocorticoid Receptor Signaling	Hela; human cervical cancer	SL0021
AP-1	JNK, ERK, MAPK Signaling	Hela; human cervical cancer	SL0019
CREB	cAMP, PICA, CaMK Signaling	HEK293; human embryonic kidney	SL0020
CREB	cAMP, PICA, CaMK Signaling	NIH/3T3; mouse fibroblast	SL0031
CHOP	Unfolded Protein Response, ER stress	Mia-Paca2; human pancreatic cancer	SL0025
TCF/LEF	Wnt/b-catenin	HEK293; human embryonic kidney	SL0015
TCF/LEF	Wnt/b-catenin	Hela; human cervical cancer	SL0022
TCF/LEF	Wnt/b-catenin	CHO-Kl; Chinese Hamster Ovary	SL0028
ELK	MAPK Signaling	HEK293; human embryonic kidney	SL0040
ELK	MAPK Signaling	Hela; human cervical cancer	SL0041
IRF	Immune Response Pathway	HEK293; human embryonic kidney	SL0035

For a complete list of cell lines please visit our website at http://www.signosisinc.com/category/cell-based-assays

** Signosis products are warranted for 30 days from the date of shipment, and this warranty is valid only if the product is stored and handled according to this user manual or product information sheet and shipped directly by Signosis.