

Human IFNy ELISA

Catalog Number EA-0507

(For Research Use Only)

Introduction

Interferons (IFNs) are potent extracellular protein mediators of host defense and homoeostasis. They are cytokines produced by the cells of the immune system in response to challenges by foreign agents such as viruses, parasites and tumor cells. It is produced by a wide variety of cells in response to the presence of double-stranded RNA, a key indicator of viral infection. IFNs are divided into two major subgroups. Type I IFNs all bind to a type I IFN receptor, such as IFN- α and IFN- β . IFN- γ is the sole type II IFN, which binds to a distinct type II receptor. Almost all cell types produce type I IFNs, while the type II IFN- γ is produced in T cells and natural killer (NK) cells upon immunological stimulation. IFN-γ coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. Cellular effects of IFNy includes up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking.

Principle of the assay

IFNy ELISA is based on the principle of a solid phase enzyme-linked immunosorbent assay. The assay utilizes rabbit anti-human IFNy antibodies for immobilization on the microtiter wells and rabbit anti-human IFNy antibodies along with streptavidin conjugated to horseradish peroxidase (HRP) for detection. The test sample is allowed to react simultaneously with the two antibodies, resulting in the IFNy molecules being sandwiched between the solid phase and enzyme-linked antibodies. After incubation, the wells are washed to remove unbound-labeled antibodies. A HRP substrate, TMB, is added to result in the development of a blue color. The color development is then stopped with the addition of Stop Solution changing the color to yellow. The concentration of IFNy is directly proportional to the color intensity of the test sample. Absorbance is measured spectrophotometrically at 450 nm.

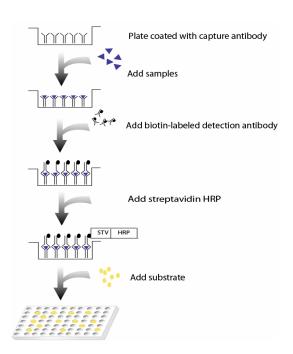
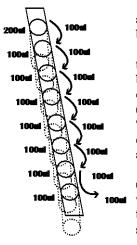


Diagram of ELISA

Materials provided with the kit

Component	Qty	Store at
8x12 96-well microplate coated with anti-human IFNγ antibody	1	4°C
Biotin labeled anti-human IFNγ antibody	25µL	-20°C
Recombinant Human IFNγ standard (400ng/ml)	10µL	-20°C
Streptavidin-HRP conjugate	50µL	4°C
1xDiluent buffer	40mL	4°C
5X Assay wash buffer	40mL	4°C
Substrate	10mL	4°C
Stop solution	5mL	4°C

Material required but not provided


- Microplate reader capable of measuring absorbance at 450 nm
- Deionized or distilled water.

- Dilute the 5x Assay wash buffer to 1x buffer 40ml 5x Assay wash buffer 160ml ddH2O
- Use serum-free conditioned media or original or 10fold diluted sera. Sera can be diluted with 1 X Diluent buffer. When serum-containing conditioned media is required, be sure to use serum as a control.
- Dilute 100 times of Human recombinant IFNγ (400ng/ml) to 4000pg/ml by adding 2µl Human recombinant IFNγ in 200µl 1x Diluent Buffer and then 2-fold serial dilutions (See Step 2 below for detailed instruction.
- Dilute 400 times of biotin labeled anti-human IFNγ antibody with 1X Diluent buffer before use.
- Dilute 200 times of streptavidin-HRP with 1X Diluent buffer before use.

Assay procedure

1. Calculate the number of samples to decide how many strips need to be used.

2. Add 100μ l of Standard, control, or sample per well and incubate for 1 hour at room temperature with gentle shaking.

a. Add 200ul 1X Diluent buffer to the 1st well. Add 100ul 1X Diluent Buffer to the rest wells of strip.
b. Add appropriate amount of protein recombinant (follow instruction in "Reagent Preparation")
c. Mix dilutions in 1st well and transfer 100ul from the 1st well to the next dilution. (See picture) Incubate each well for 1 hr at room temperature with gentle shaking

3. Aspirate each well and wash by adding 200μ l of 1X Assay wash buffer. Repeat the process three times for a total of three washes. Completely remove liquid at each wash. After the last wash, remove any remaining liquid by inverting the plate against clean paper towels.

4. Add $100\mu l$ of diluted biotin-labeled anti-human TGF- βl antibody to each well and incubate for 1 hour at room temperature with gentle shaking.

5. Repeat the aspiration/wash as in step 3.

6. Add 100 μ l of diluted streptavidin-HRP conjugate to each well and incubate for 45 min at room temperature with gentle shaking.

7. Repeat the aspiration/wash as in step 3.

8. Add 100 μ l substrate to each well and incubate for 5-30 minutes.

9. Add 50µl of Stop solution to each well. The color in the wells should change from blue to yellow.

10. Determine the optical density of each well with a microplate reader at 450 nm within 30 minutes.